

ceph-medic contents

	Introduction
	Usage

	Installation
	Official Upstream Repos

	Shaman Repos

	GitHub

	Error Codes
	Common

	Monitors

	OSDs

	Cluster

	Cluster node facts

	1.0.8

	1.0.7

	1.0.6

	1.0.5

	1.0.4

Introduction

ceph-medic is a very simple tool that runs against a Ceph cluster to detect
common issues that might prevent correct functionality. It requires
non-interactive SSH access to accounts that can sudo without a password
prompt.

Usage

The basic usage of ceph-medic is to perform checks against a ceph cluster
to identify potential issues with its installation or configuration. To do
this, run the following command:

ceph-medic --inventory /path/to/hosts --ssh-config /path/to/ssh_config check

Inventory

ceph-medic needs to know the nodes that exist in your ceph cluster before
it can perform checks. The inventory (or hosts file) is a typical Ansible
inventory file and will be used to inform ceph-medic of the nodes in your
cluster and their respective roles. The following standard host groups are
supported by ceph-medic: mons, osds, rgws, mdss, mgrs
and clients. An example hosts file would look like:

[mons]
mon0
mon1

[osds]
osd0

[mgrs]
mgr0

The location of the hosts file can be passed into ceph-medic by using
the --inventory cli option (e.g ceph-medic --inventory /path/to/hosts).

If the --inventory option is not defined, ceph-medic will first look in
the current working directory for a file named hosts. If the file does not
exist, it will look for /etc/ansible/hosts to be used as the inventory.

Note

Defining the inventory location is also possible via the config file
under the [global] section.

Inventory for Containers

Containerized deployments are also supported, via docker and podman.
As with baremetal deployments, an inventory file is required. If the
cluster was deployed with ceph-ansible, you may use that existing
inventory.

To configure ceph-medic to connect to a containerized cluster, the glocal section of the
configuration needs to define deployment_type to either docker or
podman. For example:

[global]

deployment_type = podman

Inventory for Container Platforms

Both kubernetes and openshift platforms can host containers remotely,
but do allow to connect and retrieve information from a central location.
To configure ceph-medic to connect to a platform, the glocal section of the
configuration needs to define deployment_type to either kubernetes, which
uses the kubectl command, or openshift, which uses the oc command. For example:

[global]

deployment_type = openshift

When using openshift or kubernetes as a deployment type, there is no
requirement to define a hosts file. The hosts are generated dynamically by
calling out to the platform and retrieving the pods. When the pods are
identified, they are grouped by deamon type (osd, mgr, rgw, mon, etc…).

SSH Config

All nodes in your hosts file must be configured to provide non-interactive
SSH access to accounts that can sudo without a password prompt.

Note

This is the same ssh config required by ansible. If you’ve used ceph-ansible to deploy your
cluster then your nodes are most likely already configured for this type of ssh access. If that
is the case, using the same user that performed the initial deployment would be easiest.

To provide your ssh config you must use the --ssh-config flag and give it
a path to a file that defines your ssh configuration. For example, a file like
this is used to connect with a cluster comprised of vagrant vms:

Host mon0
 HostName 127.0.0.1
 User vagrant
 Port 2200
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/andrewschoen/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

Host osd0
 HostName 127.0.0.1
 User vagrant
 Port 2201
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
 PasswordAuthentication no
 IdentityFile /Users/andrewschoen/.vagrant.d/insecure_private_key
 IdentitiesOnly yes
 LogLevel FATAL

Note

SSH configuration is not needed when using kubernetes or
openshift

Logging

By default ceph-medic sends complete logs to the current working directory.
This log file is more verbose than the output displayed on the terminal. To
change where these logs are created, modify the default value for --log-path
in ~/.cephmedic.conf.

Running checks

To perform checks against your cluster use the check subcommand. This will
perform a series of general checks, as well as checks specific to each daemon.
Sample output from this command will look like:

ceph-medic --ssh-config vagrant_ssh_config check
Host: mgr0 connection: [connected]
Host: mon0 connection: [connected]
Host: osd0 connection: [connected]
Collection completed!

======================= Starting remote check session ========================
Version: 0.0.1 Cluster Name: "test"
Total hosts: [3]
OSDs: 1 MONs: 1 Clients: 0
MDSs: 0 RGWs: 0 MGRs: 1

==

---------- managers ----------
 mgr0

------------ osds ------------
 osd0

------------ mons ------------
 mon0

17 passed, 0 errors, on 4 hosts

The logging can also be configured in the cephmedic.conf file in the global
section:

[global]
--log-path = .

To ensure that cluster checks run properly, at least one monitor node should have administrative privileges.

Installation

ceph-medic supports a few different installation methods, including system
packages for RPM distros via EPEL. For PyPI, it can be installed with:

pip install ceph-medic

Official Upstream Repos

Download official releases of ceph-medic at https://download.ceph.com/ceph-medic

Currently, only RPM repos built for CentOS 7 are supported.

ceph-medic has dependencies on packages found in EPEL, so EPEL will need to be enabled.

Follow these steps to install a CentOS 7 repo from download.ceph.com:

	Install the latest RPM repo from download.ceph.com:

wget http://download.ceph.com/ceph-medic/latest/rpm/el7/ceph-medic.repo -O /etc/yum.repos.d/ceph-medic.repo

	Install epel-release:

yum install epel-release

	Install the GPG key for ceph-medic:

wget https://download.ceph.com/keys/release.asc
rpm --import release.asc

	Install ceph-medic:

yum install ceph-medic

	Verify your install:

ceph-medic --help

Shaman Repos

Every branch pushed to ceph-medic.git gets a RPM repo created and stored at
shaman.ceph.com. Currently, only RPM repos built for CentOS 7 are supported.

Browse https://shaman.ceph.com/repos/ceph-medic to find the available repos.

Note

Shaman repos are available for 2 weeks before they are automatically deleted.
However, there should always be a repo available for the master branch of ceph-medic.

ceph-medic has dependencies on packages found in EPEL, so EPEL will need to be enabled.

Follow these steps to install a CentOS 7 repo from shaman.ceph.com:

	Install the latest master shaman repo:

wget https://shaman.ceph.com/api/repos/ceph-medic/master/latest/centos/7/repo -O /etc/yum.repos.d/ceph-medic.repo

	Install epel-release:

yum install epel-release

	Install ceph-medic:

yum install ceph-medic

	Verify your install:

ceph-medic --help

GitHub

You can install directly from the source on GitHub by following these steps:

	Clone the repository:

git clone https://github.com/ceph/ceph-medic.git

	Change to the ceph-medic directory:

cd ceph-medic

	Create and activate a Python Virtual Environment:

virtualenv venv
source venv/bin/activate

	Install ceph-medic into the Virtual Environment:

python setup.py install

ceph-medic should now be installed and available in the created virtualenv.
Check your installation by running: ceph-medic --help

Error Codes

When performing checks, ceph-medic will return an error code and message for any that failed. These checks
can either be a warning or error, and will pertain to common issues or daemon specific issues. Any error
code starting with E is an error, and any starting with W is a warning.

Below you’ll find a list of checks that are performed with the check subcommand.

	Common
	Warnings

	Errors

	Monitors
	Errors

	Warnings

	OSDs
	Warnings

	Cluster
	Errors

Common

The following checks indiciate general issues with the cluster that are not specific to any daemon type.

Warnings

WCOM1

A running OSD and MON daemon were detected in the same node. Colocating OSDs and MONs is highly discouraged.

Errors

ECOM1

A ceph configuration file cannot be found at /etc/ceph/$cluster-name.conf.

ECOM2

The ceph executable was not found.

ECOM3

The /var/lib/ceph directory does not exist or could not be collected.

ECOM4

The /var/lib/ceph directory was not owned by the ceph user.

ECOM5

The fsid defined in the configuration differs from other nodes in the cluster. The fsid must be
the same for all nodes in the cluster.

ECOM6

The installed version of ceph is not the same for all nodes in the cluster. The ceph version should be
the same for all nodes in the cluster.

ECOM7

The installed version of ceph is not the same as the one of a running ceph daemon. The installed ceph version should be the same as all running ceph daemons. If they do not match, the daemons most likely have not been restarted correctly after a version change.

ECOM8

The fsid field must exist in the configuration for each node.

ECOM9

A cluster should not have running daemons with a cluster fsid that is different from the rest of the daemons in a cluster. This potentially means that different cluster identifiers are being used, and that should not be the case.

ECOM10

Only a single monitor daemon shuld be running per host, having more than one monitor running on the same host reduces a cluster’s resilience if the node goes down.

Monitors

The following checks indicate issues with monitor nodes.

Errors

EMON1

The secret key used in the keyring differs from other nodes in the cluster.

Warnings

WMON1

Multiple monitor directories are found on the same host.

WMON2

Collocated OSDs in monitor nodes were found on the same host.

WMON3

The recommended number of Monitor nodes is 3 for a high availability setup.

WMON4

It is recommended to have an odd number of monitors so that failures can be
tolerated.

WMON5

Having a single monitor is not recommneded, as a failure would cause data loss.
For high availability, at least 3 monitors is recommended.

OSDs

The following checks indicate issues with OSD nodes.

Warnings

WOSD1

Multiple ceph_fsid values found in /var/lib/ceph/osd.

This might mean you are hosting OSDs for many clusters on
this node or that some OSDs are misconfigured to join the
clusters you expect.

WOSD2

Setting osd pool default min size = 1 can lead to data loss because if the
minimum is not met, Ceph will not acknowledge the write to the client.

WOSD3

The default value of 3 OSD nodes for a healthy cluster must be met. If
ceph.conf is configured to a different number, that setting will take
precedence. The number of OSD nodes is calculated by adding
osd_pool_default_size and osd_pool_default_min_size + 1. By default,
this adds to 3.

WOSD4

If ratios have been modified from its defaults, a warning is raised pointing to
any ratio that diverges. The ratios observed with their defaults are:

	backfillfull_ratio: 0.9

	nearfull_ratio: 0.85

	full_ratio: 0.95

Cluster

Cluster checks run once against the information of a cluster, and are
not specific to any deamon.

Errors

ECLS1

No OSD nodes exist as part of the cluster.

ECLS2

The cluster is nearfull.

Cluster node facts

Fact collection happens per node and creates a mapping of hosts and data
gathered. Each daemon ‘type’ is the primary key:

...
'osd': {
 'node1': {...},
 'node2': {...},
}
'mon': {
 'node3': {...},
}

There are other top-level keys that make it easier to deal with fact metadata, for example a full list of all hosts discovered:

'hosts': ['node1', 'node2', 'node3'],
'osds': ['node1', 'node2'],
'mons': ['node3']

Each host has distinct metadata that gets collected. If any errors are
detected, the exception key is set populated with all information pertaining
to the error generated when trying to execute the call. For example, a failed call to stat on a path might be:

'osd': {
 'node1': {
 'paths': {
 '/var/lib/osd': {
 'exception': {
 'traceback': "Traceback (most recent call last):\n File "remote.py", line 3, in <module>\n os.stat('/var/lib/osd')\n OSError: [Errno 2] No such file or directory: '/var/lib/osd'\n",
 'name': 'OSError',
 'repr': "[Errno 2] No such file or directory: '/root'"
 'attributes': {
 args : "(2, 'No such file or directory')",
 errno : 2,
 filename : '/var/lib/ceph' ,
 message : '',
 strerror : 'No such file or directory'
 }
 }
 }
 }
}

Note that objects will not get pickled, so data structures and objects will be
sent back as plain text.

Path contents are optionally enabled by the fact engine and will contain the
raw representation of the full file contents. Here is an example of what
a ceph.conf file would be in a monitor node:

'mon': {
 'node3': {
 'paths': {
 '/etc/ceph/': {
 'dirs': [],
 'files': {
 '/etc/ceph/ceph.conf': {
 'contents': "[global]\nfsid = f05294bd-6e9d-4883-9819-c2800d4d7962\nmon_initial_members = node3\nmon_host = 192.168.111.102\nauth_cluster_required = cephx\nauth_service_required = cephx\nauth_client_required = cephx\n",
 'owner': 'ceph',
 'group': 'ceph',
 'n_fields' : 19 ,
 'n_sequence_fields' : 10 ,
 'n_unnamed_fields' : 3 ,
 'st_atime' : 1490714187.0 ,
 'st_birthtime' : 1463607160.0 ,
 'st_blksize' : 4096 ,
 'st_blocks' : 0 ,
 'st_ctime' : 1490295294.0 ,
 'st_dev' : 16777220 ,
 'st_flags' : 1048576 ,
 'st_gen' : 0 ,
 'st_gid' : 0 ,
 'st_ino' : 62858421 ,
 'st_mode' : 16877 ,
 'st_mtime' : 1490295294.0 ,
 'st_nlink' : 26 ,
 'st_rdev' : 0 ,
 'st_size' : 884 ,
 'st_uid' : 0 ,
 'exception': {},
 }
 }
 }
 }
 }
}

1.0.8

17-Jun-2020

	Fix issues with podman support

1.0.7

24-Mar-2020

	Fix test bugs that were breaking rpm builds

1.0.6

11-Feb-2020

	Docker, podman container support

	Fix broken SSH config option

	Fix querying the Ceph version via admin socket on newer Ceph versions

1.0.5

27-Jun-2019

	Add check for minimum OSD node count

	Add check for minimum MON node count

	Remove reporting of nodes that can’t connect, report them separetely

	Kubernetes, Openshift, container support

	Fix unidentifiable user/group ID issues

	Rook support

	Report on failed nodes

	When there are errors, set a non-zero exit status

	Add separate “cluster wide” checks, which run once

	Be able to retrieve socket configuration

	Fix issue with trying to run whoami to test remote connections, use
true instead

	Add check for missing FSID

	Skip OSD validation when there isn’t any ceph.conf

	Skip tmp directories in /var/lib/ceph scanning to prevent blowing up

	Detect collocated daemons

	Allow overriding ignores in the CLI, fallback to the config file

	Break documentation up to have installation away from getting started

1.0.4

20-Aug-2018

	Add checks for parity between installed and socket versions

	Fix issues with loading configuration with whitespace

	Add check for min_pool_size

	Collect versions from running daemons

Index

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 ceph-medic contents

 		
 Introduction

 		
 Usage

 		
 Inventory

 		
 Inventory for Containers

 		
 Inventory for Container Platforms

 		
 SSH Config

 		
 Logging

 		
 Running checks

 		
 Installation

 		
 Official Upstream Repos

 		
 Shaman Repos

 		
 GitHub

 		
 Error Codes

 		
 Common

 		
 Warnings

 		
 Errors

 		
 Monitors

 		
 Errors

 		
 Warnings

 		
 OSDs

 		
 Warnings

 		
 Cluster

 		
 Errors

 		
 Cluster node facts

 		
 1.0.8

 		
 1.0.7

 		
 1.0.6

 		
 1.0.5

 		
 1.0.4

